80. The Adamantane Rearrangement of 1,2-Trimethylenenorbornanes

Part V1)

Rearrangements of 1,2-Trimethylenenorbornanes Initiated by Regioselective Formation of Carbocation Centers at C(2) and C(6)

by Alfred Michael Klester and Camille Ganter*

Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, ETH-Zentrum, Universitätstr. 16, CH-8092 Zürich

(17.XII.84)

The behaviour of the regioselectively generated carbocation centers at C(2) and C(6) in 1,2-trimethylenenor-bornanes was investigated in order to study the occurrence or absence of a degenerate rearrangement $\mathbf{E} \rightleftarrows \mathbf{M}$ in the adamantane rearrangement of both 1,2-endo-(1) and 1,2-exo-trimethylenenorbornane (2) to 2-endo,6-endo-trimethylenenorbornane (3). A degenerate rearrangement $\mathbf{E} \rightleftarrows \mathbf{M}$ is inevitably involved inasmuch as a 1,2-trimethylenenorborn-2-yl cation \mathbf{E} not only is formed directly as manifested by the conversions of the reactants 4 (C(2), C(3)-olefin) and 6 (C(2), C(3')-olefin), but also indirectly (via $\mathbf{F} \to \mathbf{E}$) if the leaving group at C(6) to be ionized occupies the endo-position (6-endo-alcohol 8). No degenerate rearrangement $\mathbf{E} \rightleftarrows \mathbf{M}$ is operative starting from reactants that lead directly to a 2,6-trimethylenenorborn-2-yl cation \mathbf{G} ; this is the case with both the ionization of the 6-exo-alcohol 10 having the leaving OH-group in a stereoelectronically favoured configuration to undergo simultaneous C(1),C(2)-bond migration ($\to \mathbf{G}$) as well as the protonation of the olefin 13 which is followed by the same reaction pathway.

1. Introduction. — In the adamantane rearrangement of both 1,2-endo- $(1)^2$) and 1,2-exo-trimethylenenorbornane $(2)^2$) to 2-endo,6-endo-trimethylenenorbornane $(3)^2$), a degenerate rearrangement $(\mathbf{E}\rightleftarrows\mathbf{M}^3)$; Scheme 2) is involved as verified from treatment of D-labelled 1,2-endo-, 1,2-exo-, and 2-endo,6-endo-trimethylenenorbornane (D-labelled 1, 2, and 3, resp.) with AlBr₃ in CS₂ [2].

¹⁾ For Part IV, see [1].

In the present communication the numbering of the C-atoms follows the trimethylenenorbornane nomenclature. The correct IUPAC names are listed in the Exper. Part (see also Footnote 2 in [2]).

³⁾ For the purpose of facilitating the comparison of the present *Scheme 2* with the *Scheme 3* in [2] for the AlBr₃-catalyzed adamantane rearrangement of both 1 and 2, the letters E-H and M-P are used again in the present *Scheme 2* for corresponding formulas and by consequence the letters A-D and I-L are omitted.

Under the applied reaction conditions [2], not only abstraction of the tertiary 2-exoand the secondary 6-exo-hydride ion in 1 and 2, respectively, is observed, but also abstraction of the tertiary 2-exo- and/or the 6-exo-hydride ion in 3, which causes an equilibrium between 2,6-trimethylenenorbornanes, i.e. H and P (see Scheme 2^3)), again involving a degenerate rearrangement $E \rightleftharpoons M$.

To avoid such complications and to gain more detailed information about the adamantane rearrangement of both 1 and 2 to 3, we studied the behaviour of the regioselectively generated carbocation centers at C(2) and C(6) in 1,2-trimethylenenorbornanes. This could efficiently be accomplished mainly by making use of 'ionic hydrogenation'4). As substrates for our studies we have chosen alkenes and alcohols of the types Q-U⁵) (4-14; see *Scheme 2* and *Table*).

2. Rearrangements Involving a Degenerate Rearrangement $\mathbf{E} \rightleftarrows \mathbf{M}$. -2.1. C(2)-Carbenium Ion. 2.1.1. C(2), C(3)-Olefin (Type \mathbf{Q}) as Reactant. In order to test the applicability of the ionic hydrogenation method⁴), first on the one hand the unlabelled olefin $\mathbf{4}$ [4] of type \mathbf{Q} was treated with $\mathbf{CF}_3\mathbf{CO}_2\mathbf{H}/\mathbf{Et}_3\mathbf{SiH}$ (Table, Run 1) to yield 2,6-trimethylenenorbornane (3). On the other hand, addition of neat $\mathbf{CF}_3\mathbf{CO}_2\mathbf{H}^6$) to $\mathbf{4}$ followed by hydrolysis with aq. KOH (Run 2) gave 2,6-trimethylenenorbornan-2-ol (15, see below). Although both experiments led to the expected products, they do not allow to decide whether a degenerate rearrangement $\mathbf{E} \rightleftarrows \mathbf{M}$ is involved ($\rightarrow \mathbf{H} + \mathbf{P}$) or not (\mathbf{H} only), because of \mathbf{H} and

⁴) See the review [3] and ref. cit. therein. In the first step, a carbocation is formed by either protonation of an alkene by trifluoroacetic acid or ionization of an alcohol by boron trifluorate, and in the final step, a hydride ion from triethylsilane is transferred to the primarily formed carbenium ion or a rearranged one.

⁵) For the purpose of comprehensive discussions, the latter are based on one enantiomeric form of the reactants Q-U only although racemates were used in all experiments. For a given product of the types H and P, its enantiomer is specified by a dash (e.g. 15 and 15', resp.).

For adducts of CF₃CO₂H with olefins, see [5] and ref. cit. therein.

⁷⁾ The different numbering in H^a and H^b, resp., and P^a and P^b, resp., of the same C-atoms follows from the correct IUPAC nomenclature. In order to ease the comprehension, the substituents R¹ to R⁷ are not drawn in H^a/H^b and P^a/P^b; their positions are the same as in *Formulae* H and P, resp., and are independent of the different numbering.

Table. Conversions of the Alkenes and Alcohols 4-14 as well as of Related Compounds

Reactant 4															ŕ							
Compound Type R R R R R R R R Common Compound Cype R R R R R R R R R R	Sec		Run	Reactant		-	1	,	-	ŀ	-	ľ	Reaction		5	-	,	-	-	}		,
1				Compour	nd Type	R.	2	۳,	~	ړ∠	چ	R,	Conditions	- 1	d Type	~	<u>۲</u>	2	_₹	يـ	ي	<u>`</u>
2 4 6 0 - 0 H H H H H B B 1515 HPP H H H H H H H H H H H H H H H H H	2.1.	I I	1	4	0	1	Η	Η	Į	H	Η	н	¥	ဇ	$\mathbf{H}^{\mathbf{a}}{\equiv}\mathbf{P}^{\mathbf{b}}$	H	Η	Η	Η	Η	Η	H
3 5 Q - D D - H H H H Q B 1819 HPP OH D D H H H H H H H P B 1819 HPP OH D D H H H H H H P C 1617 HPP OH D D H H H H H H P C 1617 HPP OH D D H H H H H H P C 1617 HPP OH D D H H H H H H P C 1617 HPP OH D D H H H H H H P C 1617 HPP OH D D H H H H H H P C 1617 HPP OH D D H H H H H H P C 1617 HPP OH D D H H H H H H P C 1617 HPP OH D H H H H H H P C 1617 HPP OH H H H H D H D H D H D H D H D H D H			7	4	0	I	Η	Н	i	Η	Η	H	В	15/15′	H^a/P^b	Ю	Н	Η	Η	Η	Ή	Η
1819 1819			'n	S	0	ı	Ω	Ω	ł	Н	Н	Н	¥	16/17	H^a/P^a	Н	Ω	Ω	Η	H	H	Η
\$ 1819 Higher OH D D H H H H C 16/17 Higher H D D H H H H H H H H H H H H H H H H			4	ď	0	1	Ω	Ω	i	H	H	H	В	18/19	H^{a}/P^{b}	Ю	Ω	Ω	Н	H	Η	Η
6 15 H ² OH H H H H H H H D D H H H H H D D D H H H H H H H H D H D H			5	18/19	$\mathbf{H}^{\mathrm{a}}/\mathbf{P}^{\mathrm{b}}$	НО	Ω	Q	Η	Η	Η	Н	C	16/17	H^a/P^a	Н	Ω	Ω	Н	Η	Η	Η
2 2 H ^o OH H D H H H H C C 22 H ^o Bp H H H H H D D D D D D D D D D D D D D			9	15	H	НО	Ή	Η	Η	Η	Ξ	н	D	20	H	Ω	Ή	Η	H	H	Η	H
8 23 H ^a Cl H H H D H H F 5 24 H ^b D H H H D H H H D D H D D D D D D D D			7	21	H^a	НО	Ξ	Ω	Η	Ξ	Η	Н	C	22	H^a	Η	Η	Q	Η	Н	Η	Ή
9 4 0 0 - H H - H H H F C 26/77 H ^P =P H H H D H D H D H D H D H D H D H D H			∞	23	H^a	ij	Η	Η	Η	Ω	H	Н	E	77	$\mathbf{H}^{\mathbf{a}}$	НО	Ή	H	Η	Q	Ξ	Η
10 4 0 0 0 0 0 0 0 0			6	4	0	1	Η	Η	i	H	Η	Н	F	25	$\mathbf{H}^{\mathbf{b}}\mathbf{=}\mathbf{P}^{\mathbf{b}}$	H	Ξ	Η	Ω	H	Ω	Ω
11			01	4	, O	1	Η	Η	ı	Η	Η	Н	Э	26/27	H^a/P^b	НО	Η	H	Ω	Η	Q	Q
12 39/31 H ¹ /P ² OR ² H H D H D D I 32/33 H ² /P ² OH H H H H H H H H			11	4	, O	ı	Ή	Η	ı	Η	H	Н	Н	28/29 ^b)	R/V	1	Η	H	Ω	Η	1	Η
13 6 R			12	30/31	H^a/P^b	OR°)		Η	Ω	H	Q	Q	I	32/33	H^a/P^b	ЮН	Η	Η	Ω	Η	Ω	Ω
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.1	2	13	9	~	ı	Ξ	Η	Ξ	Ξ	ı	Н	*	(C)	$H^a \equiv P^b$	Ξ	Η	Η	Ή	Η	Η	Η
15 7 8 8 8 9 1 1 1 1 1 1 1 1 1	i	ı	14	ی د	~	ı	Ξ	: Ξ	Ξ	: Ξ	ı	: Ξ	. 89	15/15'	Ha/Pb	ЮН	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ
17 6 8 8 1			. 2	, ,	~	1	<u> </u>	: _	Ξ	Ξ	ı	; =	~	18/19	Ha/Pb	HO	: _	<u> </u>	Ξ	: Ξ	Ξ	Ξ
17. 6			<u> </u>		; <u>p</u>		1 1	1 1	; ;	; ;		: =	i La	7.7	Hamp	Ξ	ıΞ	בו	Ξ	; ;		<u>ر</u>
19 8 S OH H H H H H H H C 33/37 H^{1} C D D D H H H H H H H H C 33/37 H^{1} B D D D D D D D D D D D D D D D D D D			2 2	.	4 P		7 1	= =	= =	; =		= =	י נ	36/36	Ha/Dp	200	: 1	: :	= =	: 1	<u>ا</u> د	ם ב
18			/;	۱ د	4 1	I	= (Ξ.	c :	□:	l	ς:	۰ د	55/55	1,0	5	ם מ	٦ <i>د</i>	= :	ς:	1	: ב
19 8 S S O O O O O O O O			8/	7	~	ı	Ω	2	I	H	ı	Ξ	•	7/36")	Κ/V	ŀ	a	a	I	Ξ	ļ	I
20 8 S OH H H H H H H H K $37/37$ H^3/P^2 C H H H H H H H H C $38/20^{10}$ H^3/P^2 C D H H H H H H H C $38/20^{10}$ H^3/P^2 C D H H H H H H H C $38/20^{10}$ H^3/P^2 C D H H H H H H H C $38/20^{10}$ H^3/P^2 C D H H H H H H H H C $38/20^{10}$ H^3/P^2 C D H H H H H H H C $38/20^{10}$ H^3/P^2 C D H H H H H H H C $39/40$ H^3/P^2 C D H H H H H H H H C $39/40$ H^3/P^2 C D H H H H H H H H C $39/40$ H^3/P^2 C D H H H H H H H H C $39/40$ H^3/P^2 C D H H H H H H H H H C $39/40$ H^3/P^2 C D H H H H H H H H C $39/40$ H^3/P^2 C D H H H H H H H H H C $39/40$ H^3/P^2 C D H H H H H H H H H H H H H H H H H H	2.2		61	∞	S	НО	H	Н	Η	Н	Η	Н	Ċ	3	$\mathbf{H}^a \coloneqq \mathbf{P}^b$	Η	H	Η	Η	Η	H	Η
21 9 S OH D H H H H H H C 38/20 ¹⁰ H^{4}/P^{2} H D H H H H H H H H C 39/40 H^{4}/P^{2} OH D H H H H H H H H H H H H H H H H H			20	•	S	НО	Η	Η	Н	Η	Н	Н	×	37/37	$\mathbf{H}^{\mathbf{a}}/\mathbf{P}^{\mathbf{b}}$	ט	Η	Η	Η	Η	H	Η
23 39/40 H ³ /P ^b Cl D H H H H H H H C 39/40 H ³ /P ^b Cl D H H H H H H H H H H H H H H H H H H			71	•	V.	Н		Ξ	Ξ	Ξ	Ξ	Ξ	Ü	38/2010)	H^a/P^a	Ή	Ω	Ή	Ξ	Ή	Ξ	Ή
23 39/40 H^s/P^b Cl D H H H H H H C C 3 H^s/P^b OH D H H H H H H H C C 3 H^s/P^b OH D H H H H H H H H C C 3 H^s/P^b OH D H H H H H H H H H C C 3 H^s/P^b OH D H H H H H H H H H C C 3 H^s/P^b OH D H H H H H H H H H H H C C 3 H^s/P^b OH D H H H H H H H H H H C C 3 H^s/P^b OH D H H H H H H H H H C C 3 H^s/P^b OH D H H H H H H H H H H H H H H H H H			22	. •) V	HO		; =	Ξ	Ξ	Ξ	: Ξ	×	39/40	Ha/Pb	i 🗆		Ξ	Ξ	Ξ	Ξ.	Ξ
24 10 T OH H H H H H H C 3 3 $H^a = P^b$ H H H H H H H H H H H H H H H H H H H			33	39/40	$\mathbf{H}^{\mathbf{a}}/\mathbf{P}^{\mathbf{b}}$	ס	۵	Ξ	Ξ	н	H	H	; i	41/42	Ha/Pb	ЮН	Ω	Η	Ξ	Ξ	Ξ	H
25 10 T OH H H H H H H H K 37 H 3 C H H H H H H H H H H H L L 43 H 3 C H H H H H H H H H H H L L 43 H 3 C H H H H H H H H H H H L L 43 H 3 C H H H H H H H H H H H H H H H H H H	3 1		24	: =	· F	НО	Ξ	I	Ξ	Ħ	Ξ	Ξ	ر	` ,,,	Ha≔pp	Ξ	Ξ	I	Ξ	Ξ	I	Ξ
28 13	:		25	10	· [-	HO	; =	: 1	: 1	; ;	; 1	: =) >	, 5	Ha	: 5	Ξ.	ΈΞ	Ξ	Ξ.	Ξ.	Ξ
20 11 1 OH H H H H H H H K 23 H 3 3 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4			3 %	2	- [-	5 5	; ;	: 6	1 1	: =	; ;	: :	4 -	5 5	Пa	j ξ	; :	: c	; =	: :	; ;	; ;
28 13 U - H - H H H H H M 3 H 3 3 3 4 3 4 3 4 4 2 4			07	1 5	- [-	5 5	1 1	ם ב	= =	= 6	= =	= =	1 %	3 5	Lla Cla	3 5	= =	ם נ	1 1	: 0	= =	=======================================
28 13 U - H - H H H H A 3 H ³ =P ⁰ H H H H H H H H H H H H H H H H H H H			/7	71	-	E0	-	G	=	۵	=	G	4	3		3	1	=	:	2	1	11
29 13 U - H - H H H H H M 20 H³ D H H H H H H H H H H H H H H H H H	3.2		28	13	Þ	ı	Η	ı	Η	Η	H	Η	¥	6	$\mathbf{H}^a{\equiv}\mathbf{P}^b$	Η	Η	Н	H	Ή	Η	H
30 13 U - H - H H H H F 22 H³ H³ H H D H H H H H H B 38 H³ H H D H H H H H H B 38 H³ H³ H D H H H H H H B 32 13 U - H - H H H H H H M M M 17¹¹⟩ H³ D H D H H H H H H H H H H H H H H H			29	13	n	ι	Η	i	Η	Η	Η	Η	M	20	\mathbf{H}^a	Ω	Η	Η	Η	Η	Η	Η
31 14 U - D - H H H H A 38 H ^a H D H H H H H H A 38 H ^a H D H H H H H H B 32 13 U - H - H H H H H H H M N 17 ¹³) H ^a D H D H H H H H H H B 31 17 ¹³ H ^a D H D H H H H H H H H B 31 17 ¹³ H ^a D H D H H H H H H B 4. CF ₃ CO ₂ H/Et ₃ SiH; B: 1) CF ₃ CO ₂ H, CF ₃ CO ₂ H, E ₃ SiH; B: 1) CF ₃ CO ₂ H, CF ₃ CO ₂ H; B: 2QC ₂ H; B:		·	30	13	n	1	H	1	Η	Η	Η	Η	F	22	\mathbf{H}^{a}	Η	Η	Ω	Η	Η	Ξ	H
32 13 U - H - H H H H H N 17 ¹³ H ^a D H D H D H H H H H B S 33 13 U - H - H H H H H H G Z 11 H ^a D H D H D H H H H H H B S 33 13 U - H - H H H H H H G Z 11 H ^a D H H D H H H H H H H B G Z 11 H ^a D H H D H H H H H H H H B G Z 11 H ^a D H H D H H H H H H H H H B G Z 12 H B C 2 2 1 H B D H H H H H H H H B G Z 1 H B D H H H H H H B G Z 1 H B D H H H H H H H B G Z 1 H B D H H H H H H H B D G Z 1 H B D H H H H H H H H H B D G Z 1 H B D H H H H H H H H H H H H H H H H H			31	14	n	ı	Ω	ı	H	Н	Η	н	A	38	\mathbf{H}^{g}	Η	Ω	Н	H	Η	Η	Η
33 13 U − H − H H H H G G 21 H² OH H D H H H H H G A: CF ₃ CO ₂ H/Et ₃ SiH; B: 1) CF ₃ CO ₂ H, 2) aq. KOH; C: BF ₃ /Et ₃ SiD; E: aq. K ₂ CO ₃ ; F: CF ₃ CO ₂ D/Et ₃ SiH; G: 1) CF ₃ CO ₂ D, 2) aq. KOH; H: ≤ mol-equiv. CF ₃ CO ₂ D; F: LiAlH ₄ or aq. KOH; J: ≤ 0.5 mol-equiv. CF ₃ CO ₂ H; K: SOCl ₂ , r.t.; L: SOCl ₂ , −20°; M: CF ₃ CO ₂ H/Et ₃ SiD; N: CF ₃ CO ₂ D/Et ₃ SiD. R = COCF ₃ . R = COCF ₃ . In addition: a mixture of esters (not isolated).		•	32	13	n	ł	Η	1	Η	Η	Η	Н	N	17^{13})	H^a	Ω	Н	Ω	Н	Н	Η	Η
A: CF_3CO_2H/Et_3SiH ; B: 1) CF_3CO_2H , 2) aq. KOH ; C: BF_3/Et_3SiH ; D: BF_3/Et_3SiD ; E: aq. K_2CO_3 ; F: CF_3CO_2D/Et_3SiH ; G: 1) CF_3CO_2D , 2) aq. KOH ; H: \leqslant mol-equiv. CF_3CO_2D ; F: LiAlH, or aq. KOH ; J: \leqslant 0.5 mol-equiv. CF_3CO_2H ; K: $SOCI_2$, r.t.; L: $SOCI_2$, -20° , M: CF_3CO_2H/Et_3SiD ; N: CF_3CO_2D/Et_3SiD . In addition: a mixture of the esters 30/31 (type H^a/P^b : $R^1 = OCOCF_3$, $R^4 = D)^3$). R = $COCF_3$. In addition: a mixture of esters (not isolated).		•	33	13	n	1	Н	ı	Η	Н	H	Н	G	21	\mathbf{H}^{a}	Ю	H	Q	Н	Η	Н	Н
mol-equiv. CF_3CO_2D ; I : LiAlH ₄ or aq. KOH ; J : $\leqslant 0.5$ mol-equiv. CF_3CO_2H ; K : SOCl ₂ , r.t.; L : SOCl ₂ , -20° ; M : CF_3CO_2H /Et ₃ SiD; N : CF_3CO_2D /Et ₃ SiD. In addition: a mixture of the esters 30/31 (type H^a/P^b : $R^1 = OCOCF_3$, $R^4 = D)^9$). R = COCF ₃ . In addition: a mixture of esters (not isolated).	e e	A: CI	F,CO,H	/Et,SiH; B	١.	O,H, 2)	aq. K	OH: 0	C: BF	/Et ₃ Si	H; D:	BF ₃ /Et	SiD; E: aq. K,CO	1; F: CF,CO	D/Et,SiH	. G: 1)	CF,C	0,D	2) aq.	KOH	H	≤ 0.5
In addition: a mixture of the esters 30/31 (type H ^a /P ^b : R R = COCF ₃ . In addition: a mixture of esters (not isolated).		mol-e	equiv. Cl	F,CO,D; 1	_	raq. K	OĤ;,	v	5	equiv	G.	Ю,Й; A	$\vec{K} : SOCI_2, r.t., \vec{L} : SC$	ČCl., −20°; №	CF,CO	H/Et,	SiD;	V. CF.	ĆÓĮ	V/Et ₃ S	Ü.	
$R = COCF_3$. In addition: a mixture of esters (not isolated).	ء	In ad	dition: a	mixture o	-	30/31	type l		24	χoς	F., R	4 = D)	· ·	i				•	1			
In addition: a mixture of e	ۍ`	R = (COCF ₁ .								'n											
	€	In add	dition: a	mixture of	f esters (no	t isolate	(p															

P being identical in the first case and H^{a7}) (15) and P^{b7}) (15') being enantiomeric') in the second case for R^1 to $R^7 = H$. However, the D-labelled C(2),C(3)-olefin 5 [4] (Run 3: CF₃CO₂H/Et₃SiH) yielded a mixture of the 2 constitutional isomers 16 and 17, which in fact proves indirectly that a C(2)-carbenium ion E of a 1,2-trimethylenenorbornane, once formed, ultimately undergoes a degenerate rearrangement $E \rightleftharpoons M$ as happens in the AlBr₃-catalyzed rearrangements of both 1 and 2 [2]. The same conclusion has to be drawn from the conversion of 5 to the constitutionally isomeric alcohols 18 and 19 (Run 4: 1) CF₃CO₂H; 2) aq. KOH), which on further reduction (Run 5: BF₃/Et₃SiH) again afforded a mixture of 16 and 17.

As basis for the interpretation of the above experiments served the reductions of the unlabelled alcohol 15 to 20 (Run 6: BF₃/Et₃SiD) and of the monodeuterated analogue 21 to 22 (Run 7: BF₃/Et₃SiH) as well as the hydrolysis of the chloride 23 to 24 (Run 8: aq. K_2CO_3) as the only alcohol.

A most remarkable result was obtained from the treatment of the undeuterated olefin 4 with deuterated trifluoroacetic acid $(Run\ 9)$. Deuterium was not only incorporated at C(3) but in addition also at C(1') and C(3') as established by the partial $(ca.\ 15\%)$ formation of 25⁸). Analogously, D-incorporation was observed when the olefin 4 was reacted with CF₃CO₂D followed by base hydrolysis $(Run\ 10: \rightarrow ca.\ 15\%)$ of the alcohols 26⁸) and 27⁸)). An attractive explanation for this result would be an equilibrium $\mathbb{R} \rightleftarrows \mathbb{E} \rightleftarrows \mathbb{M} \rightleftarrows \mathbb{V}$. To prove this proposal, the olefin 4 was treated with only 0.5 mol-equiv. of CF₃CO₂D $(Run\ 11)$. The reisolated olefins (48%) consisted, in addition to unlabelled 4, of $ca.\ 40\%$ of a 1:1 mixture of 28 (type \mathbb{R} , $\mathbb{R}^4 = \mathbb{D} - \mathbb{C}(3)$) and 29 (type \mathbb{V} , $\mathbb{R}^4 = \mathbb{D} - \mathbb{C}(7)$)⁹).

This provides conclusive evidence for a degenerate rearrangement $\mathbf{E} \rightleftharpoons \mathbf{M}$ being involved. It has to be noted that, starting neither from 4 nor 5, D-incorporation or scrambling in the recovered reactants were detected as it is the case by the AlBr₃-treatment [2] of 1 and 2.

2.1.2. C(2), C(3')-Olefin (Type **R**) as Reactant. As a consequence of the indirect evidence for an equilibrium $\mathbf{R} \rightleftarrows \mathbf{E} \rightleftarrows \mathbf{M} \rightleftarrows \mathbf{V}$ (see 2.1.1: Runs 10 and 11), we studied independently the behaviour of C(2), C(3')-olefins (type **R**) themselves. Treatment of unlabelled **6** with CF_3CO_2H/Et_3SiH (Run 13) and CF_3CO_2H followed by base hydrolysis (Run 14) yielded 2,6-trimethylenenorbornane (3) and the corresponding C(2)-alcohols $\mathbf{15/15'}^5$), respectively. That a degenerate rearrangement $\mathbf{E} \rightleftarrows \mathbf{M}$ is involved also in these conversions is confirmed by the ca. 1:1 mixture of the constitutionally isomeric dideuterated alcohols $\mathbf{18}$ (type \mathbf{H}^a) and $\mathbf{19}$ (type \mathbf{P}^b), which resulted from the D-labelled olefin $\mathbf{7}$ (Run 15: 1) CF_3CO_2H ; 2) aq. KOH).

To gain conclusive direct proof for the equilibrium $\mathbf{R} \rightleftarrows \mathbf{E} \rightleftarrows \mathbf{M} \rightleftarrows \mathbf{V}$, the following experiments were carried out: As a prerequisite it was first certified that the unlabelled olefin 6 on $\mathbf{CF_3CO_2D}$ treatment gave 2,6-trimethylenenorbornanes with D-incorporation at $\mathbf{C}(1')$ as well as at $\mathbf{C}(3')$. Indeed partial (*ca.* 15%) formation of the dideuterated products $\mathbf{34}$ (*Run* 16: $\mathbf{CF_3CO_2D/Et_3SiH}$) and $\mathbf{35/35'}$ 5) (*Run* 17: 1) $\mathbf{CF_3CO_2D}$; 2) aq. KOH) were observed. Finally, when exposing the 5-exo,6-exo-dideuterated olefin 7 to only 0.5

⁸⁾ In addition to the listed compound (see *Table*), the ones with lower D-contents were also present.

⁹⁾ In addition, ca. 23% of a mixture of esters containing ca. 15% of a 1:1 mixture of trideuterated 308) and 318) (see *Table*) was isolated. Reduction or hydrolysis of 30/31 (Run 12) gave the corresponding alcohols 328) and 338).

mol-equiv. of CF_3CO_2H (Run 18), the reisolated reactant consisted of a ca. 1:1 mixture of 7 (type **R**, $R^2 = R^3 = D$) and the 5-endo,6-endo-dideuterated analogue 36 (type **V**, $R^2 = R^3 = D$).

- 2.2. C(6)-Carbenium Ion: 6-endo-Alcohol (Type S) as Reactant. Two different reaction conditions were applied to convert the 6-endo-alcohol 8 (type S) to 2,6-trimethylene-norbornanes. Ionic hydrogenation (Run 19: BF₃/Et₃SiH) led to unsubstituted 3, whereas treatment with SOCl₂ (Run 20) yielded the 2-chloro compounds $37/37'^5$). Analogous treatment of the corresponding D_{exo} -C(6)-labelled alcohol 9 with BF₃/Et₃SiH (Run 21) gave a ca. 3:1 mixture of 38 (D-C(1)) and 20^{10} (D-C(2)) and with SOCl₂ (Run 22) a ca. 10:1 mixture of the chlorides 39 (D-C(1)) and 40 (D-C(2))¹¹). The formations of the above mixtures conclusively prove a degenerate rearrangement $E \rightleftharpoons M$, and by consequence [1,3]-H-shifts ($E \rightleftharpoons F$ and $M \rightleftharpoons N^{12}$)) are always involved as soon as a C(6)-carbenium ion F of an 1,2-exo-trimethylenenorbornane is an intermediate. Isomerizations without participation of $E \rightleftharpoons M$ would have resulted in compounds of type H^a (38 and 39, resp.) as the sole products with a D-atom (R^2) at C(1) only.
- 3. Rearrangements Not Involving a Degenerate Rearrangement $E \rightleftharpoons M$. -3.1. 6-exo-Alcohol (Type T) as Reactant. The 6-exo-alcohol 10 [6] of type T was first treated under reaction conditions which verified that the rearrangements to 2,6-trimethylenenorbornanes can be accomplished smoothly. Normal ionic hydrogenation (Run 24: BF₃/Et₃SiH) yielded 3. Reaction of 10 with SOCl₂ (Run 25) gave the expected 2-chloro compound 37.

Interestingly enough, treatment of the D_{exo} —C(5)-labelled alcohol 11 [1] with SOCl₂ (Run 26) led only to the monodeuterated chloride 43 of the general type \mathbf{H}^a . No product of type \mathbf{P}^b (R¹ = Cl, R³ = D), i.e. the enantiomer of the C(7)-diastereoisomer 23⁵), could be detected. Equivalent to this result was the conversion of the D_{endo} —C(5)-labelled alcohol 12 with SOCl₂ (Run 27), which gave rise to the monodeuterated chloride 23 (type \mathbf{H}^a) as the sole product. Again no compound of type \mathbf{P}^b (R¹ = Cl, R⁵ = D), i.e. the enantiomer of the C(7)-diastereoisomer 43⁵), was observable.

These results clearly demonstrate that in 10 the 6-exo-hydroxy group occupies a stereoelectronically favoured configuration so that on its leaving simultaneous C(1),C(2)-bond migration occurs to generate directly the carbenium ion G. The latter does not undergo a [1,2]-C-shift to F, but is instantaneously trapped by a hydride ion to yield the product of type H^a .

3.2. C(5),C(6)-Olefin (Type U) as Reactant. The ionic hydrogenation was finally applied to the C(5),C(6)-olefin 13 [6] of type U. Indeed 2,6-trimethylenenorbornane (3) was obtained quantitatively (Run 28: CF_3CO_2H/Et_3SiH). Analogously, experiments either with Et_3SiD (Run 29) or CF_3CO_2D (Run 30) gave the expected monodeuterated products 20 and 22, respectively⁵). Further information about the reaction pathway was gained as follows. The D-labelled olefin 14 [1] was transformed to the D-C(1) compound 38 of type H^a as the sole product (Run 31: CF_3CO_2H/Et_3SiH), and none of its constitutional isomer of type P^a ($R^2 = D$) which corresponds to 20 (H^a , $R^1 = D$) was observed.

¹⁰) It has to be noted that for 20, type P^a with $R^2 = D$ is identical to type H^a with $R^1 = D$.

¹¹⁾ For further identification, 39/40 was hydrolyzed to the corresponding mixture of the alcohols 41 and 42 (Run 23).

¹²⁾ The [1,3]-D-shift M≠N (isotope effect) compared to the [1,3]-H-shift E≠F might in part be responsible for the 3:1 ratio of 38 and 20¹⁰) and the 10:1 ratio of 39 and 40 (determined by ¹H-NMR).

Again only a type- \mathbf{H}^a compound and none of a type- \mathbf{P}^b one, *i.e.* the C(7)-diastereoisomer of its enantiomer, was obtained by converting the undeuterated olefin 13 to the dideuterated product $\mathbf{17}^{13}$) (*Run 32:* $\mathrm{CF_3CO_2D/Et_3SiD}$) and to the monodeuterated alcohol 21 (*Run 33:* 1) $\mathrm{CF_3CO_2D}$; 2) aq. KOH), respectively. Obviously protonation of the C(5),C(6)-double bond is accompanied by simultaneous C(1),C(2)-bond migration. Thus, starting from the C(5),C(6)-olefin 13, as in the case of the 6-exo-alcohol 10 (see 3.1), the carbenium ion G is formed directly and does not undergo a [1,2]-C-shift to F. By consequence no degenerate rearrangement $\mathbf{E} \rightleftarrows \mathbf{M}$ is involved in the transformation of olefin 13 to 2,6-trimethylenenorbornane (3).

4. Reactants and Products: Syntheses and Structure Assignments⁵)⁷). – The following reactants and products have already been described earlier: **3** [2] [7]¹⁴), **4** [4], **5** [4], **10** [6], **11** [1], **13** [6], **14** [1], **15** [6] [8]¹⁴), **16** [2], **17** [2] and **20** [2]¹⁴).

The novel 1,2-trimethylenenorbornanes 6-9 and 12 were synthesized according to *Scheme 3*. The C(2),C(3)-olefin 4 [4], on treatment with a catalytic amount (ca. 0.15

14) See also Exper. Part.

¹³⁾ It has to be noted that for 17, type H^a with $R^1 = R^3 = D$ is identical to type P^a with $R^2 = R^3 = D$.

mol-equiv.) of CF_3CO_2H at r.t., was readily converted to the C(2), C(3')-olefin 6. The latter could also be prepared from the diene 44 [4]. Heating for 4 h at 150° in the presence of t-BuOK yielded almost quantitatively the isomerized diene 45, which on diimide reduction¹⁵) gave 6. Analogous treatment of 45 with dideuterated diimide¹⁵) resulted in 7.

Reduction of the C(6)-ketone 46 [6] with LiAlH₄ or LiAlD₄ led to the unlabelled 6-endo-alcohol 8 and the 6-exo-deuterio analogue 9, respectively.

Reaction of the epoxide 47 [6] with LiEt₃BD gave a 6:1 mixture (80%) of the desired 5-endo-deuterated 6-exo-alcohol 12 and its isomer 48, from which the former was easily separated.

Unambiguous structural assignments to the various D-labelled compounds (see *Table*) are based on spectral analyses (¹H-NMR, ¹³C-NMR, MS)¹⁶) of products and recovered reactants as well as of the following compounds, specifically prepared by independent routes: **20–22**, **24**, **42**, and **53–55**. Their syntheses are summarized in *Scheme 4*. The unlabelled alcohol **15** [6] [8] was dehydrated in refluxing hexamethylphosphoric triamide (HMPT)¹⁷). A mixture of compounds was formed, from which the tetracyclic hydrocarbons **49** [6] (*ca*. 50%) and **50** [10] (*ca*. 5%) as well as the olefins **6** (*ca*. 15%) and **13** [6] (*ca*. 15%) were isolated. Analogous treatment of the D–C(7)-alcohol **21**¹⁸) yielded **51** as the main product. Minor amounts of the tetracyclic compound **52** and a 1:1 mixture of the D–C(5)-olefins **53/54** were collected too.

¹⁵⁾ Diimide or dideuterated diimide was generated in situ at r.t. from dipotassium azodicarboxylate (PADA) in CH₃OH/AcOH and CH₃OD/AcOD, respectively.

¹⁶⁾ The ¹H-NMR and ¹³C-NMR data of the 4 unlabelled compounds 3, 6, 15, and 37 are listed in the *Exper. Part.* The following characteristic features are observed in the ¹³C-NMR spectra of D-labelled compounds [8]: a) D-labelled C-atoms: t (¹J(C, D) \approx 20 Hz), ca. 0.4 ppm shifted to higher field; b) C-atoms α to D-labelled C-atoms: t (²J(C, D) < 1 Hz), ca. 0.1 ppm shifted to higher field; c) C-atoms β to D-labelled C-atoms: t (³J(C, D) < 1 Hz), ca. 0.02 ppm shifted to higher field.

¹⁷) For earlier studies on dehydration of alcohols in HMPT, see [9].

¹⁸⁾ For the synthesis of 21, see below and Table (Run 33).

Reaction of 49 with CF_3CO_2H/Et_3SiH led to 2-endo,6-endo-trimethylenenorbornane (3), whereas the application of CF_3CO_2H followed by basic hydrolysis (aq. KOH) gave the corresponding C(2)-alcohol 15. These transformations by ionic hydrogenation⁴) opened the possibility to prepare various D-labelled analogues of 3 and 15, just by choosing a specific combination of reactant (49 or 51) and reagents. Thus the following compounds were synthesized specifically: 20 (49 + CF_3CO_2H/Et_3SiD or CF_3CO_2D/Et_3SiH), 21/24′ (51 + CF_3CO_2H followed by aq. KOH), 22 (51 + CF_3CO_2H/Et_3SiH), 42 (49 + CF_3CO_2D/Et_3SiD).

Financial support by the Swiss National Science Foundation and by Ciba-Geigy AG, Basel, is gratefully acknowledged. We are indepted to the following persons in our analytical department for their help: Miss B. Brandenberg, Mr. F. Fehr, and Mr. M. Langenauer (NMR), Mrs. L. Golgowsky and Prof. J. Seibl (MS).

Experimental Part

General Remarks. See [2].

1. NMR Data of 3, 6, 15, and 37. – 2-endo,6-endo-Trimethylene-8,9,10-trinorbornane (3). ¹H-NMR (300 MHz): 0.95 (dd, $J_{gem} = 11$, $J_{2,3endo}$ and $J_{5endo,6}$, resp., = 4, H_{endo} –C(3), H_{endo} –C(5)); 1.25–1.65 (m, 10H); 1.73 (m, $w_{1/2} \approx 8$, H–C(1)); 2.00 (m, $w_{1/2} \approx 20$, H–C(2), H–C(6)); 2.12 (m, $w_{1/2} \approx 10$, H–C(4)). ¹³C-NMR (75.5 MHz): 14.33 (t, C(2')); 27.09 (t, C(1'), C(3')); 33.67 (t, C(3), C(5)); 33.90 (d, C(2), C(6)); 37.82 (d, C(4)); 41.88 (d, C(1)); 41.88 (t, C(7)).

1,2-Trimethylene-8,9,10-trinorborn-2(3')-ene (= 10,2-(1'-Ethanyl-2'-ylidene)-8,9-dinorbornane; 6). \(^1\)H-NMR (300 MHz)\(^1\)9): 1.44 (dq, $J_{gem} = 9$, J = 2, 2, 2, $H-C(7)^{C(2)}$); 1.25-1.35 (m, among others J = 9, $H_{endo}-C(5)$); 1.39 (dt, $J_{gem} = 9$, J = 3.5, 3.5, $H-C(7)^{C(5)}$); 1.4-1.65 (m, 2H-C(6)); 1.71 (m, $w_{V_2} \approx 35$, $H_{exo}-C(5)$); 1.76 (ddd, $J_{gem} = 13.5$, $J_{1'a,2'a} = 2$, H-C(1'a)); 1.84 (d, $J_{gem} = 16$, $w_{V_2} \approx 8$, $H_{endo}-C(3)$); 1.91 (dt, $J_{gem} = 13.5$, $J_{1'b,2'a} = J_{1'b,2'b} = 9$, H-C(1'b)); 2.18 (d, $J_{gem} = 16$, $w_{V_2} \approx 11$ each, $J_{exo} = 12$); 2.46 (m, $J_{exo} \approx 11$); 2.5-2.6 ($J_{exo} = 12$); 2.65-2.8 ($J_{exo} = 12$); 3.69 ($J_{exo} = 12$); 3.70 ($J_{exo} = 12$); 3.71 ($J_{exo} = 12$); 3.72 ($J_{exo} = 12$); 3.73 ($J_{exo} = 12$); 3.74 ($J_{exo} = 12$); 3.75 (J_{exo

2-endo,6-endo-Trimethylene-8,9,10-trinorbornan-2-ol (15). 1 H-NMR (300 MHz) 19): 0.83 (ddd, J_{gem} = 12, J = 4.5, $J_{5endo,7}^{C(2)}$ = 3, H_{endo} -C(5)); 1.22 (dd, J_{gem} = 10, J = 1, $w_{V_{3}} \approx 4$ each, H-C(7) $^{C(5)}$); 1.26 (m, $w_{V_{3}} \approx 5$, HO-C(2)); 1.3–1.7 (m, 8H); 1.70 (m, $w_{V_{3}} \approx 8$, H-C(1)); 1.75–1.8 (m, H-C(7) $^{C(2)}$ and 1H)); 2.13 (m, $w_{V_{4}} \approx 20$, H-C(6)); 2.21 (m, $w_{V_{4}} \approx 9$, H-C(4)). 13 C-NMR (25.2 MHz): 18.64 (t, C(2')); 26.47 (t, C(3')); 31.90 (t, C(5)); 34.13 (t, C(6)); 35.87 (t, C(1')); 37.16 (t, C(4)); 38.68 (t, C(7)); 44.87 (t, C(3)); 50.08 (t, C(1)); 77.15 (t, C(2)).

2-Chloro-2-endo,6-endo-trimethylene-8,9,10-trinorbornane (37). ¹H-NMR (300 MHz)¹⁹): 1.19 (ddd, $J_{gem} = 12.5, J = 4.5, J_{Sendo,7}^{C(2)} = 2.5, H_{endo}^{-}C(5)$); 1.35 (dm, $J_{gem} = 10, w_{1/2} \approx 5$ each, H-C(7)^{C(5)}); 1.37-1.57 (m, 4H); 1.63 (tdd, J = 12, 12, 4, 3, 1H); 1.77 (dd, $J_{gem} = 14, J_{3endo,7}^{-}C(5) = 2.5, H_{endo}^{-}C(3)$); 2.03 (dtd, $J_{gem} = 10, J = 2, 2, J_{1,7}^{-}C(5) = 1.5, H^{-}C(7)^{-}C(5)$; 2.1-2.25 (m, 3H, among others H-C(1)); 2.27 (m, $w_{1/2} \approx 9, H^{-}C(4)$). ¹³C-NMR (25.2 MHz): 18.76 (t, C(2')); 26.08 (t, C(3')); 31.80 (t, C(5)); 35.26 (d, C(6)); 37.95 (d, C(4)); 38.60 (t, C(1')); 39.76 (t, C(7)); 46.29 (t, C(3)); 52.15 (d, C(1)); 76.86 (s, C(2)).

2. Experiments of *Table 1*. – As a representative example for each type of reaction conditions, the experiment of the unlabelled reactant with unlabelled reagents is described.

Method A (CF_3CO_2H/Et_3SiH): Conversion 13 \rightarrow 3 (and Analogously Methods F, M, and N). To a soln. of 170 mg (1.269 mmol) of olefin 13 [6] in 4 ml of dry CH₂Cl₂, 210 μ l (1.322 mmol) of Et₃SiH followed by 720 μ l (9.411 mmol) of CF₃CO₂H were added. After stirring for 1 h at r.t., the solv. was removed by distillation through a Vigreux column. From the residue, 134 mg (78%) of 3 [2] [7] were isolated by prep. GLC (A: 140°).

Method B (CF_3CO_2H Followed by aq. KOH): Conversion $13 \rightarrow 15$ (and Analogously Method G). To 2.00 g (14.95 mmol) of olefin 13 [6], 5 ml (7.45 g, 64.8 mmol) of CF_3CO_2H were added with stirring at r.t. After 1 h, Et_2O (30 ml) and 20 ml of a 10% aq. KOH soln. were added and the mixture stirred for further 12 h. Usual workup and bulb-to-bulb distillation (130°/12 Torr) afforded 2.09 g (92%) of 15 [6] [8].

Method C (BF₃/Et₃SiH): Conversion 15 \rightarrow 3 (and Analogously Method D). A soln. of 102 mg (0.67 mmol) of alcohol 15 [6] [8] in 3 ml of dry CH₂Cl₂ was treated with 200 μ l (1.259 mmol) of Et₃SiH. BF₃-gas was bubbled through the mixture for 5 min. The solv. was distilled off through a Vigreux column. From the residue, 71 mg (70%) of 3 [2] [7] were isolated by prep. GLC (B: 120°).

Method J (≤ 0.5 mol-equiv. CF_3CO_2H): Conversion $4\rightarrow 6$ (and Analogously Method H). A soln. of 245 mg (1.828 mmol) of the olefin 4 [4] in 1 ml of dry CH_2Cl_2 was treated with 20 μ l (0.261 mmol) of CF_3CO_2H . After

¹⁹) The superscripts indicate toward which C-atom a substituent is orientated.

stirring for 5 min, the soln. was concentrated by distillation through a Vigreux column, and 6 (137 mg, 56%) was isolated by prep. GLC (B: 110°).

Method K (SOCl₂): Conversion 10→37 (and Analogously Method L). To 22 mg (0.145 mmol) of alcohol 10 [6], 100 μ l (1.378 mmol) of SOCl₂ were added at -70° . The mixture was allowed to warm up and stirred for 1 h at r.t., worked up in pentane, and the org. layer washed 3 times with H₂O and once with sat. NaHCO₃. Bulb-to-bulb distillation (150°/20 Torr) yielded 22 mg (89%) of 37. M.p. 69–71°. IR: 1472w, 1455m, 1445s, 1335w, 1325m, 1300m, 1291m, 1265m, 1212m, 1110m, 1068s, 1048s, 948w, 932w, 917s, 905m. ¹H-NMR and ¹³C-NMR: see above. MS: 172 (0.6), 170 (2.1, M^+ , C₁₀H₁₅Cl), 136 (11), 135 (100), 107 (11), 93 (17), 91 (11), 79 (20), 77 (11), 67 (18).

3. Syntheses of 6–9 and 12 (Scheme 3). – 1,2-Trimethylene-8,9,10-trinorborna-2(3'),5-diene (= 10,6-(1'-Ethanyl-2'-ylidene)-8,9-dinorborna-2-ene; 45). A soln. of 240 mg (1.82 mmol) of 44 [4] in 3 ml of t-BuOH and 1 g of t-BuOK was heated in a sealed tube for 4 h to 150°. Workup and bulb-to-bulb distillation (110°/12 Torr) gave 225 mg (94%) of 45. IR: 3120w, 3050m, 1670w, 1608w, 1452w, 1440w, 1431m, 1332m, 1309w, 1288w, 1150w, 1127m, 1068w, 973w, 900m.

1H-NMR (300 MHz)¹⁹): 1.24 (d, $J_{gem} = 7.5$, $J_{gem} = 3.5$, J_{gem}

Olefin 6. a) From 45. To a suspension of 200 mg (1.515 mmol) of 45 in 1.5 ml of CH₃OH and 295 mg (1.521 mmol) of PADA, a mixture of 260 μl (4.55 mmol) of CH₃CO₂H and 0.5 ml of CH₃OH was added dropwise. Workup and bulb-to-bulb distillation (110°/12 Torr) gave 135 mg (67%) of 6. IR: 3047m, 1665m, 1452m, 1445m, 1430m, 1312m, 1298m, 1285m, 1252m, 1215m, 1165m, 1160m, 1080m, 1050m, 975m, 940m, 905m. ¹H-NMR and ¹³C-NMR: see above. MS: 134 (47, M^+ , C₁₀H₁₄), 133 (7), 119 (56), 105 (100), 93 (13), 92 (33), 91 (61), 80 (11), 79 (29), 78 (16), 77 (29), 65 (11), 51 (11), 41 (14).

b) From 4 with HMPT. A soln. of 5 mg (0.037 mmol) 4 in 1 ml of HMPT was refluxed (240°). Capill. GLC (60°) showed the ratio of 4/6 to be 1:1 after 2 h and 2:3 after 12 h.

c) From 4 with CF_3CO_2H . See above (Chap. 2).

1,2-Trimethylene(5-exo,6-exo- 2H_2)-8,9,10-trinorborn-2(3')-ene (= 10,2-(1'-Ethanyl-2'-ylidene)(5-exo,6-exo- 2H_2)-8,9-dinorbornane; 7). To a suspension of 380 mg (2.879 mmol) of 45 in 2.0 ml of CH₃OD and 570 mg (2.938 mmol) of PADA, a mixture of 520 µl (8.951 mmol) of CH₃CO₂D and 0.7 ml of CH₃OD was added dropwise. Workup, distillation (110°/12 Torr) and prep. GLC (100°, Carbowax M 20 on Chromosorb W 60/80) yielded 211 mg (54%) of 7. ¹H-NMR (300 MHz): 1.5–1.7, signals for H_{exo} -C(5) and H_{exo} -C(6) missing. ¹³C-NMR (25.2 MHz, ¹H-decoupled): characteristic signals ¹⁶) at 29.51 (t, J = 20, C(5)); 31.81 (t, J = 20, C(6)). MS: 137 (4.2), 136 (37.7, M +, C_{10} H₁₂D₂), 135 (10.5), 121 (25), 120 (26), 108 (12), 107 (15), 106 (23), 105 (100), 94 (11), 93 (25), 92 (33), 91 (20), 80 (11), 79 (19), 78 (16), 77 (14).

1,2-exo-Trimethylene-8,9,10-trinorbornan-6-endo-ol (= 6-exo,10-(1',2'-Ethanediyl)-8,9-dinorbornan-2-endo-ol; 8). A mixture of 60 mg (0.40 mmol) 46 [6] in 60 ml of Et₂O and 123 mg (3.24 mmol) of LiAlH₄ was stirred at r.t. over night. Workup and chromatography on 7.5 g of silica gel in pentane/Et₂O 3:1 yielded 42 mg (69%) of 8. IR: 3630m, 3380 br., 1475m, 1450m, 1304m, 1097w, 1077s, 1060m, 1045m, 1019w, 993w, 952w, 904w, 870w.

1H-NMR (300 MHz)¹⁹: 0.95 (dt, $J_{gom} = 12.5$, $J_{Sendo,6exo} = 4$, $J_{Sendo,7}^{C(2)} = 4$, $H_{endo}^{-C(5)}$); 1.30 (dm, $J_{gem} = 10$, $W_{V_3} \approx 8$ each, among others $J_{2endo,7}^{C(5)} = J_{4,7}C(5) \leqslant 1$, $H^{-}C(7)^{C(5)}$); 1.15–1.32 (m, 1H); 1.37 (ddd, $J_{gem} = 10$, $J_{Sendo,7}^{C(2)} = 4$, $J_{4,7}^{C(2)} = 1.5$,

1,2-exo-Trimethylene (6-exo- 2 H)-8,9,10-trinorbornan-6-endo-ol (=6-exo,10-(1',2'-Ethanediyl) (2-exo- 2 H)-8,9-dinorbornan-2-endo-ol; **9**). A soln. of 261 mg (1.74 mmol) of **8** in 35 ml of Et₂O and 164 mg (3.9 mmol) of LiAlD₄ was stirred at r.t. for 18 h. Addition of 0.3 ml of H₂O and workup gave 146 mg (55%) of **9**. IR: 3620m, 3400 br., 2140w, 1465w, 1450m, 1307s, 1245w, 1200w, 1172s, 1150m, 1095s, 1050m, 1010m, 958w, 948w, 907w, 898w, 868w. 1 H-NMR (300 MHz): 4.06, signal for H_{exo}-C(6) missing. MS: 154 (4.9), 153 (37.1, M^+ , C₁₀H₁₅OD), 152 (1.3), 135 (23), 121 (15), 120 (13), 119 (12), 108 (24), 107 (100), 106 (58), 105 (12), 94 (12), 93 (22), 92 (16), 91 (20), 82 (13), 81 (20), 80 (35), 79 (61), 77 (14), 67 (35), 41 (22).

1,2-exo-Trimethylene(5-endo- 2H)-8,9,10-norbornan-6-exo-ol (= 6-exo,10-(1',2'-Ethanediyl)(3-endo- 2H)-8,9-dinorbornan-2-exo-ol; 12). A soln. of 2.820 g (18.8 mmol) of 47 [6] in 21 ml of 1M LiEt₃BD in THF was refluxed for 12 h. Further 1.5 ml of 1M LiEt₃BD in THF were added and refluxing continued for additional 6 h. The mixture was cooled to 0°, treated with 15 ml of 2N NaOH, 15 ml of 30% H_2O_2 , and refluxed for 1 h. Workup in Et₂O afforded 2.310 g (80%) of a ca. 6:1 mixture of 12 and 48, from which 12 was separated by prep. GLC (170°, 20% Carbowax M 20 on Chromosorb W 60/80). ¹H-NMR (300 MHz)¹⁹): 1.17 (dm, J_{gem} = 10, $w_{1/2}$ \approx 4 each, H-C(7)^{C(2)}); 1.2-1.35 (m, 2H); 1.35-1.5 (m, 4H, among others H_{exo} -C(5)); 1.55-1.85 (m, 3H, among others H_{endo} -C(5) missing); 1.85-1.95 (m, 2H); 2.24 (m, $w_{1/2}$ \approx 10, H-C(4)); 3.62 (m, $w_{1/2}$ \approx 4, H_{endo} -C(6)). MS: 154 (5.2), 153 (47.5, M^+ , $C_{10}H_{15}$ OD), 152 (2.7), 135 (26), 124 (13), 122 (14), 120 (13), 110 (13), 108 (25), 107 (100), 106 (60), 105 (11), 97 (13), 94 (13), 93 (20), 92 (16), 91 (18), 82 (18), 81 (18), 80 (37), 79 (57), 77 (16), 67 (36), 41 (26).

4. Syntheses of 20–22, 24, and 53–55 (Scheme 4). – Dehydration of 15. A soln. of 600 mg (3.95 mmol) of 15 in 10 ml of HMPT was refluxed (240°) for 1 h. Workup with pentane and bulb-to-bulb distillation (120°/12 Torr) gave 473 mg (ca. 90%) of a mixture of hydrocarbons (capill. GLC at 60°: 53% 49, 13% 13 [6], 16% 6, 5% 50 [10], and further compounds), which was stirred for 4 h in 10 ml of EtOH in the presence of 10% Pd/C under H_2 . After filtration, addition of 25 ml of pentane, and washing the org. layer with H_2 0, the solv. was distilled through a Vigreux column. From the residue, 227 mg (48%) of tetracyclo[5.2.1.0^{1.5}.0^{5.9}] decane (49) [6] was collected by prep. GLC (100°, 10% Apiezon L on Chromosorb P 80/100 AW-DMCS). IR: 3040m, 1448s, 1380w, 1345w, 1278s, 1262m, 1215w, 1170w, 1165w, 1120s, 1000w, 915m, 905m, 890m, 875w. ¹H-NMR (300 MHz): 1.03 (m, $w_1 \approx 3$, H–C(9)); 1.17, 1.34 (2'd', AB, $J_{gem} = 10$, further J = 1, 2H–C(6), 2H–C(10)); 1.38 (m, $w_1 \approx 4$, 2H–C(8)); 1.4–1.8 (m, 2H–C(2), 2H–C(4), H–C(3)); 1.87 (m, $w_1 \approx 2$, H–C(3')); 2.06 (m, $w_1 \approx 6$, H–C(7)). ¹³C-NMR (75.5 MHz): 18.51 (d, C(9)); 26.15 (t, C(2), C(4)); 28.69 (t, C(3)); 31.99 (s, C(1), C(5)); 34.87 (t, C(8)); 36.29 (d, C(7)); 36.29 (t, C(6), C(10)). MS: 134 (71, M +, C₁₀H₁₄), 119 (65), 106 (46), 105 (46), 93 (21), 92 (46), 91 (100), 80 (27), 79 (43), 78 (20), 77 (34), 65 (14), 53 (11), 51 (13), 41 (18).

Dehydration of 21. A soln. of 880 mg (5.752 mmol) of 21 in 10 ml of HMPT was refluxed (240°) for 1 h. Workup with pentane, bulb-to-bulb distillation (120°/12 Torr) and prep. GLC (100°, 20% Carbowax M 20 on Chromosorb W 60/80) gave 240 mg (31%) of 51, 60 mg (8%) of a 1:1 mixture 53/54 and 16 mg (2%) of 52. (8-2H) Tetracyclo[5.2.1.0^{1.5}.0^{5.9}] decane (51): ¹³C-NMR (25.2 MHz, ¹H-decoupled): characteristic signals ¹⁶) at 18.39 (C(9)); 36.20 (C(7)); 34.50 (t, J = 20, C(8)). MS: 136 (11), 135 (100, M^+ , C₁₀H₁₃D), 134 (22), 120 (66), 119 (36), 107 (45), 106 (54), 93 (32), 92 (75), 91 (48).

 $(5-^2H)$ Tetracyclo[4.4.0.0^{2.4}.0^{3.7}] decane (52). ¹³C-NMR (25.2 MHz, ¹H-decoupled): characteristic signal ¹⁶) at 33.67 (t, J = 20, C(5)). MS: 136 (11), 135 (100, M^+ , C₁₀H₁₃D), 134 (10), 120 (25), 119 (8), 107 (12), 106 (26), 105 (12), 94 (13), 93 (23), 92 (48), 91 (22).

1,2-Trimethylene(5-exo- 2H)- and 1,2-Trimethylene(5-endo- 2H)-8,9,10-trinorborn-2(3')-ene (= 10,2-(1'-Ethanyl-2'-ylidene)(5-exo- 2H)- and 10,2-(1'-Ethanyl-2'-ylidene)(5-endo- 2H)-8,9-dinorbornane; 53/54). ¹H-NMR (300 MHz): integrals for H_{endo} -C(5) (1.25–1.35) and H_{exo} -C(5) (1.71): 50% of 1H each. ¹³C-NMR (25.2 MHz, ¹H-decoupled); characteristic signal ¹⁶) at 29.61 (t, J = 20, C(5)). MS: 136 (2.7), 135 (27, M^{\pm} , $C_{10}H_{13}D$), 120 (5), 107 (15), 106 (100), 105 (12), 92 (11), 91 (20), 78 (18).

5. Ring Opening in 49 and 51 (Scheme 4). – The experiments were carried out like the ones of the Table. Method A (CF_3CO_2H/Et_3SiH): Conversions $49\rightarrow 3$ and $51\rightarrow 22$ (and analogously method M and/or F for $49\rightarrow 20$ and method N for $49\rightarrow 55$).

Method B (CF_3CO_2H followed by aq. KOH): Conversions 49 \rightarrow 15 and 51 \rightarrow 21/24' (and analogously method G for 49 \rightarrow 42).

REFERENCES

- [1] A.M. Klester, C. Ganter, Helv. Chim. Acta 1985, 68, 104.
- [2] A.M. Klester, C. Ganter, Helv. Chim. Acta 1983, 66, 1200.
- [3] W.P. Weber, in 'Reactivity and Structure Concepts in Organic Chemistry', 'Silicon Reagents for Organic Synthesis', Springer-Verlag, Berlin, 1983, Vol. 14, p. 273.
- [4] F.J. Jäggi, C. Ganter, Helv. Chim. Acta 1980, 63, 866.
- [5] J. E. Nordlander, J. E. Haky, J. P. Landino, J. Am. Chem. Soc. 1980, 102, 7487.
- [6] E.J. Corey, R.S. Glass, J. Am. Chem. Soc. 1967, 89, 2600.
- [7] E. M. Engler, M. Farcasiu, A. Sevin, J. M. Cense, P. v. R. Schleyer, J. Am. Chem. Soc. 1973, 95, 5769.
- [8] Y. Fujikura, M. Ohsugi, Y. Inamoto, N. Takaishi, K. Aigami, J. Org. Chem. 1978, 43, 2608.
- [9] R.S. Monson, D. N. Priest. J. Org. Chem. 1971, 36, 3826; R.S. Monson, Tetrahedron Lett. 1971, 567; J.S. Lomas, D.S. Sagatys, J.-E. Dubois, ibid. 1972, 165.
- [10] N. Takaishi, Y. Fujikura, Y. Inamoto, K. Aigami, J. Org. Chem. 1977, 42, 1737.